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A unified theory to construct exact optical rogue wave solutions of (1+1)-dimensional nonlinear Schrödinger
equation with varying coefficients is proposed. The dynamics of the first-order optical rogue waves in
nonlinear graded-index waveguide amplifiers exhibiting self-focusing or self-defocusing Kerr nonlinearity
are also investigated. Moreover, under the suitable parameter condition, the propagation characteristics
of the rogue waves in the nonlinear optical media are discussed. The properties of the optical rogue waves,
such as width, amplitude, and position, can be controlled in the nonlinear optical media.
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Rogue waves, whose amplitude are two, three, or more
times higher than the average wave crests[1], have re-
ceived a great deal of attention for understanding their
complex physics and wealth of potential applications in
recent years. The rogue waves have been considered as
myths for a long time (they appear from nowhere and dis-
appear without a trace), and are potentially destructive
(their amplitudes are much higher than the average wave
crests)[2,3]. Intensive efforts have been devoted to explain
how rogue waves are excited. Generally speaking, modu-
lational instability is considered as the main mechanism
for the appearance of rogue waves. In addition, soliton
collision with energy exchange can lead to the creation
of rogue waves. The nonlinear Schrödinger equation
(NLSE) can describe many dynamical features of rogue
waves. With the increase in theoretical and experimental
studies on this topic, the rogue waves are now observed
in many fields of nonlinear science, such as the non-
linear oceanography[4−6], the nonlinear optics[7−11], and
the mean-field theory of Bose-Einstein condensates[12,13].
The rogue waves in the open ocean were firstly mea-
sured on the oil platform in Norway in 2005[5]. The
initial experiments studied optical rogue waves in the
supercontinuum generation in 2007[8]. Recently, Kibler
et al.

[10] experimentally observed multiple periodic solu-
tions in optical fibre. Matter rogue waves have also been
observed in Bose-Einstein condensates embedded in an
optical lattice[12].

To date, most of the experimental and theoretical
studies are focused on optical pulses propagating in
the nonlinear optical material governed by the (1+1)-
dimensional NLSE[2,3,7]. However, only few studies have
focused on the higher-dimensional cases[14−16]. To the
best of our knowledge, this letter is the first to report on
the position and direction control of optical rogue waves
in nonlinear graded-index waveguide amplifiers.

Our goal is to construct the exact optical rogue wave
solutions of the (1+1)-dimensional NLSE with varying
coefficients and investigate the propagation dynamics of
the optical rogue waves in a planar graded-index waveg-
uide amplifiers. Then, we discuss the control of the rogue

waves.
We start by considering the propagation of a

continuous-wave (CW) optical beam inside a planar,
graded-index nonlinear waveguide amplifier with the re-
fractive index given as

n(z, x) = n0 + n1f(z)x2 + n2γ(z)I(z, x), (1)

where I(z, x) is the optical intense. Here, the first two
terms describe the linear part of the refractive index, and
the last term represents Kerr-type nonlinearity. We con-
sider the generalized NLSE with distributed coefficients
as
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which describes the propagation of the optical beam in-
side a planar graded-index waveguide amplifier with the
refractive index n = n0 + n1f(z)x2 + n2γ(z)|I|2[17,18].
Here σ = n2/|n2| = ±1 corresponds to self-fousing (+)
and self-defousing (−) nonlinearities of the waveguide,
respectively, and f(z), γ(z), and g(z) are the functions of
the normalized distance z. The dimensionless tapering
function f(z) can be negative or positive, depending on
whether the graded-index medium acts as self-focusing
(γ > 0) or self-defocusing (γ < 0) Kerr nonlinearities.
Here, u is the beam envelope, z is the propagation dis-
tance, and x is the spatial coordinate. Further, g(z)
stands for the gain (g > 0) or the loss (g < 0). All the
above variables u, z, x, and g(z) have been respectively
normalized by (k0|n2|LD)−1/2, LD, ω0, and L−1

D , with
the wavenumber k0 = 2πn0/λ at the input wavelength
λ, the diffraction length LD = k0(2k2

0n1)
−1/2, and the

characteristic transverse scale ω0 = (2k2
0n1)

−1/4.
We start by seeking a solution to Eq. (2) of the form

u(z, x) = A(z)U [X(z, x), Z(z)] exp[iϕ(z, x)], (3)

ϕ(z, x) =
1

2
a(z)x2 + b(z)x + c(z), (4)

where A(z) and ϕ(z, x) are the dimensionless amplitude
and global phase, respectively. Further, the transformed

1671-7694/2013/031901(4) 031901-1 c© 2013 Chinese Optics Letters



COL 11(3), 031901(2013) CHINESE OPTICS LETTERS March 10, 2013

field U(X, Z) satisfies the following standard, homoge-
neous NLSE:

iUz +
1

2
Uxx + |U |2U = 0, (5)

with a set of differential equations being satisfied. After
solving these differential equations, one obtains the simi-
larity variable, position, amplitude, effective propagation
distance, and phase of the beam given as

X(z, x) =
x − xc(z)

ω(z)
, xc(z) =

(
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(6)
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The parameters related to the phase are given by
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where a(z), b(z), and c(z) are the parameters related to
the phase-front curvature, the frequency shift, and the
phase offset, respectively. The real function ω(z) is the
width of the beam, and the subscript 0 denotes the initial
values of the given variables. Note that the transforma-
tion of the inhomogeneous NLSE into the homogeneous
one is obtained with the need to satisfy the following
constraint condition

g = −ωz

ω
− γz

γ
, (9)

f =
ωzz

ω
. (10)

Equation (5) has been extensively investigated, and
many kinds of exact solutions have been obtained. One
of these solutions, the rational-oscillatory solution, has
some intriguing properties. In this letter, we are going to
study this rogue wave solution in a nonlinear optical sys-
tem. Here, the optical rogue wave solution of Eq. (2) can
be readily obtained by using the similariy transformation
(Eq. (3)), as the rational-oscillatory solution of Eq. (5)
has already been obtained by Peregrine in 1983[19]. Note
that the rational-oscillatory solution (also called Pere-
grine soliton) has been demonstrated in optics recently
by Kibler et al.

[20,21]. Next, we apply the Galilean trans-
formation to the first-order rational-oscillatory solution
as
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[
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× exp
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, (11)

where Zc and v are two arbitrary constants, Xc =
v(Z − Zc) is the center of the rogue wave, and Z = Zc

is the position where the rogue wave emerges and dis-
appears after that. By the Galilean transformation, the
parameter Zc is added in solution of Eq. (11). However,
we find that the parameter Zc is important to control the

rogue waves, which can be found in the following analy-
sis. This kind of analysis for Eq.(1) is new.

Therefore, the one-to-one correspondence of Eq. (3)
and rational-oscillatory solution of Eq. (11) admit us to
obtain variable parametric rational-oscillatory solution of
Eq. (1), that is, the function U in solution (3) is re-
placed by the detailed form of Eq. (11). This kind of
variable parametric rational-oscillatory solution for Eq.
(1) is hardly reported.

In the following, we demonstrate that the optical rogue
waves can be restricted to emerge in the desirable po-
sition by adjusting the corresponding parameters. We
consider some specific cases in order to gain further in-
sights into the dynamical behavior of the optical rogue
wave. We begin by observing that Eq. (10) is formally
identical to a wave equation governing the modes of an
inhomogeneous planar waveguide with the refractive in-
dex profile given by the function f(z). It then follows
from the theory of sech2-profile waveguide[22] that the
lowest-order mode of such a waveguide has the form

f(z) = 1 − 2sech2(z), w(z) = sech(z). (12)

According to the exact expression of pulse’s width, we
can obtain the explicit expressions of the similarity vari-
able, effective propagation distance, and the phase. Here,
we respectively address the functions of the effective
propagation distance and pulse’s center position as

Z =
1

2
cosh(z)sinh(z) +

1

2
z + Z0, xc

=
1

2

b0cosh(z)sinh(z) + b0z + 2x0

cosh(z)
. (13)

If we take g(z) = g0tanh(z), from the compatibility con-
dition in Eq. (9), the required cubic nonlinearity pa-
rameter is found to be γ(z) = cosh(z)1−g0 , where g0 is
an arbitrary constant. The gain, width, and tapering
profiles are displayed in Fig. 1. As can be seen, the ta-
pering function f(z) crosses zero near z = 1, implying
that the linear inhomogeneity of the waveguide should
change from the focusing to de-focusing type. The re-
quired normalized gain g(z) is zero initially and tends
toward 0.01 asymptotically for large z. Such a gain dis-
tribution can be realized. Then the other parameters are
given by

A(z) =
1

ω
√

σγ
, (14)

Fig. 1. (Color online) Gain, width, and tapering profiles, plot
as functions of z, for the specific choices of f(z).
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a(z) = −tanh(z), b(z) =
b0

sech(z)
,

c(z) = −1

4
b2
0[cosh(z)sinh(z) + z]. (15)

On one hand, from the first expression of Eq. (13), the
effective propagation distance has a relation to the origi-
nal propagation distance, one has Z > z and Z → ∞
with z → ∞, which implies that optical rogue wave
will be excited at somewhere and then vanish quickly.
Figure 2 displays the evolution of the first-order rogue
wave in nonlinear optical material. The excitation of
the center-of-mass motion of the rogue wave follows a
curved line when one takes the parameter b0 = 2 (Fig.
2). Conversely, when one takes the parameter b0 = −2
(Fig. 3), the excitation process of the center-of-mass of
the rogue wave follows a curved line which points to a
different direction in comparison with the red dashed
line plotted in Fig. 2. In addition, we consider a spe-
cial situation with f(z) = f0 (which is a constant). In
this case, from Eq. (10) we can see the beam with
ω(z) = C1exp[

√
f0z] + C2 exp[−

√
f0z], where we chose

ω(0) = 1. To Simplify, we take C1 = C2 = 1/2. If we
take γ(z) = γ0, (where γ0 is an arbitrary constant), from
the compatibility condition in Eq. (9), the required gain
parameter is found to be g =

√
f0. The gain, width,

and tapering profiles are displayed in Fig. 3. Such dis-
tributions can be realized easily. According to the exact
expression of pulse width, wer can obtain the explicit ex-
pressions of the similarity variable, effective propagation
distance, and the phase. Here, we respectively address
the functions of the effective propagation distance and
pulse’s center position as
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exp[2
√

f0z]√
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Then, the other parameters are given by
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, (17)
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As before, from the first expression of Eq. (16), the
effective propagation distance has a relation to the orig-
inal propagation distance, one has Z > z and Z → ∞
with z → ∞, which implies the optical rogue waves will
be excited at somewhere and then vanish quickly. Figure
4 displays the evolution of the first-order rogue wave in
nonlinear optical material. The excitation of the center-
of-mass motion of the rogue wave follows a curved line
when one takes the parameter b0 = 2 (Fig. 5). Con-
versely, when one takes the parameter b0 = −2 (Fig.
6), the excitation process of the center-of-mass motion
of the rogue wave follows a curved line which points to
a different direction in comparison with the red dashed
line plotted in Fig. 5.

Above all, the optical rogue wave can be controlled to

 

Fig. 2. (Color online) (a) Emergence of the optical rogue
wave with the parameters b0 = 2, x0 = 0.1, g0 = 0.01,
σ = 1, v = 0.1, Zc = 8, and other parameters are specified
in the text; (b) corresponding contour plot (red dashed line
denotes the center-of-mass motion of the optical pulse); (c)
corresponding width, the effective propagation distance, and
amplitude.

 

Fig. 3. (Color online) (a) Emergence of the optical rogue
wave with the parameters b0 = −2, x0 = 0.1, g0 = 0.01,
σ = 1, v = 0.1, Zc = 8, and other parameters are specified
in the text; (b) corresponding contour plot (red dashed line
denotes the center-of-mass motion of the optical pulse); (c)
corresponding width, the effective propagation distance, and
amplitude.

Fig. 4. (Color online) Gain, width, and tapering profiles, plot
as functions of z, for the specific choices of f(z).
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Fig. 5. (Color online) (a) Emergence of the optical rogue wave
with the parameters f0 = 0.05, b0 = 2, x0 = 1, γ0 = 1, σ = 1,
v = 0.1, Z0 = 1, Zc = 8, and other parameters are specified
in the text; (b) corresponding contour plot (red dashed line
denotes the center-of-mass motion of the optical pulse); (c)
corresponding width, the effective propagation distance, and
amplitude.

Fig. 6. (Color online) (a) Emergence of the optical rogue wave
with the parameters f0 = 0.05, b0 = −2, x0 = 0.1, γ0 = 1,
σ = 1, v = 0.1, Z0 = 1, Zc = 8, and other parameters
are specified in the text; (b) corresponding contour plot (red
dashed line denotes the center-of-mass motion of the opti-
cal pulse); (c) corresponding width, the effective propagation
distance, and amplitude.

emerge in the desirable position and direction through
adjusting the corresponding parameters: f(z) and b(z),
which means that we can control the propagation of op-
tical rogue wave by the materials and the initial optical
pulse.

In conclusion, we construct the relation between the
pulse propagation and exact optical rogue wave solutions
of (1+1)-dimensional NLSE with varying coefficients.
Moreover, we investigate the dynamic of the first-order
optical rogue wave in waveguide amplifiers. We find that
the properties of the optical rogue waves, such as width,
amplitude, and position, are controllable in the nonlin-
ear optical media. Under the parameter condition, we
discuss the propagation behaviors of controllable rogue
waves. The results well supplement our comprehension
of the rogue waves, that is it “appears from nowhere and

disappears without a trace”; rogue waves can be con-
trolled as discussed by a similar transform method in
this letter. Moreover, these results may have potential
values for the optical pulses, optical rogue waves. How-
ever, due to the lack of experimental and designed basis
related to these theoretical results, we cannot provide
further details about the real physical application. More
practical implementations of these theoretical results can
be identified in future studies.
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